Meson-baryon scattering

in manifest Lorentz invariant chiral perturbation theory

Maxim Mai

June 2nd 2010

Why and how...

- fundamental part of various processes
- large amount of data up to quite high energies
 - \hookrightarrow GWU: 30K data points for $\pi N \rightarrow \pi N$

low energy \longrightarrow effective field theory:

χPT₂₍₃₎
 ...expanding the QCD Greens functions in {small meson momenta} and {up, down and (strange)} - quark masses
 Weinberg (1979), Gasser and Leutwyler (1984)

How...

M. Frink, U.-G. Meißner (2006)

- ▶ 1st order: $\mathcal{L}_{\phi B}^{(1)} \longrightarrow$ WT and Born type: D, F, m_0
- ▶ 2nd order: $\mathcal{L}_{\phi B}^{(2)} \longrightarrow$ contact terms (11 LECs \leftarrow FIT)
- 3rd order:

 $\begin{array}{l} \mathcal{L}_{\phi B}^{(3)} \longrightarrow \text{contact terms (13 LECs} \leftarrow \text{neglected)} \\ \mathcal{L}_{\phi B}^{(1)}, \mathcal{L}_{\phi}^{(2)}, \mathcal{L}_{\phi}^{(4)} \longrightarrow \text{wave function renormalization} \end{array}$

How...

 \rightsquigarrow regularization:

dim-Reg of the UV-divergencies

How...

► baryons carry intrinsic scale $m_0 \sim 1$ GeV (even if $m_{u,d,s} = 0$)

 $\mathbf{H}(p^{2}, M^{2}, m_{0}^{2}) = \frac{1}{i} \int \frac{d^{d}k}{(2\pi)^{d}} \frac{1}{(k^{2} - M^{2})((k - p)^{2} - m_{0}^{2})} = \frac{\Gamma(2 - d/2)}{(4\pi)^{d/2}} \int_{0}^{1} \Delta_{z} \frac{d}{z} - 2dz$ $\Delta_{z} = m_{0}^{2}z^{2} - 2m_{0}M \frac{p^{2} - M^{2} - m_{0}^{2}}{2m_{0}M} z(1 - z) + M^{2}(1 - z)^{2}$

→ Infrared Regularization of baryon loops:

(respects low energy PC) + (manifest Lorentz invariance)

Result

- ► scattering length: $a_{\phi B} = \frac{m_B}{4\pi(m_B + M_{\phi})} T_{\phi B}(s_{thr})$
- ► F_{ϕ} , M_{ϕ} , D, F: fixed to the physical values, $m_0 = 1.15$ GeV, 0.938 GeV< $\mu < 1.314$ GeV
- the HB result is obtained by expanding and truncating T_{\u03c6B} at finite chiral order
- ► { $b_0, b_D, b_F, b_1, ..., b_{11}$ } \longleftrightarrow { $\sigma_{\pi N}, \{m_B\}, a_{\pi N}^+, a_{KN}^{(1)}, a_{KN}^{(0)}$ }/ d_0 Ellis, Torikoshi (2000), Bernard, Kaiser, Meißner (1993) Schroeder(πN) (2001), Martin(KN) (1980)

Channel	=	$\mathcal{O}(q^1)$	$+\mathcal{O}(q^2)_{IR[HB]}$	$+\mathcal{O}(q^3)_{IR[HB]}$	$\sum_{IR[HB]}$
$a_{\pi N}^{(3/2)}$	=	-0.12	+0.05[+0.05]	+0.04[-0.06]	$-0.04^{+0.07}_{-0.07}[-0.13^{+0.03}_{-0.03}] - 0.13 \pm 0.01$
$a_{\pi N}^{(1/2)}$	=	+0.21	+0.05[+0.05]	-0.19[+0.00]	$+0.07^{+0.07}_{-0.07}[+0.26^{+0.03}_{-0.03}] - 0.25 \pm 0.03$
$a_{\pi \Xi}^{(3/2)}$	=	-0.12	+0.04[+0.04]	+0.10[-0.09]	$+0.02^{+0.06}_{-0.07}[-0.17^{+0.03}_{-0.03}]$
$a_{\pi \Xi}^{(1/2)}$	=	+0.23	+0.04[+0.04]	-0.24[-0.03]	$+0.02^{+0.08}_{-0.10}[+0.23^{+0.03}_{-0.03}]$
$a_{\pi \Sigma}^{(2)}$	=	-0.24	+0.10[+0.07]	+0.15[-0.07]	$+0.01^{+0.04}_{-0.04}[-0.24^{+0.01}_{-0.01}]$
$a_{\pi\Sigma}^{(1)}$	=	+0.22	+0.09[+0.11]	-0.21[+0.00]	$+0.10^{+0.16}_{-0.17}[+0.33^{+0.06}_{-0.06}]$
$a_{\pi \Sigma}^{(0)}$	=	+0.46	+0.11[-0.01]	-0.47[+0.04]	$+0.10^{+0.17}_{-0.19}[+0.49^{+0.07}_{-0.08}]$
$a_{\pi\Lambda}^{(1/2)}$	=	-0.01	+0.03[+0.03]	-0.03[-0.11]	$-0.01^{+0.04}_{-0.04}[-0.09^{+0.01}_{-0.01}]$

Result

Channel	=	$\mathcal{O}(q^1)$	$+\mathcal{O}(q^2)_{I\!R}$	$+\mathcal{O}(q^3)_{I\!R}$	\sum_{IR}	
$a_{KN}^{(1)}$	=	-0.45	+0.60	-0.48	$-0.33^{+0.32}_{-0.32}$	-0.33
$a_{KN}^{(0)}$	=	+0.04	-0.15	+0.13	$+0.02^{+0.64}_{-0.64}$	+0.02
$a_{\bar{k}N}^{(1)}$	=	+0.20	+0.22	-0.26 + 0.18i	$+0.16^{+0.39}_{-0.44} + 0.18i$	+0.37 + 0.60i
$a_{\bar{k}N}^{(0)}$	=	+0.53	+0.97	-0.40 + 0.22i	$+1.11^{+0.47}_{-0.59} + 0.22i$	-1.70 + 0.68i
$a_{K\Sigma}^{(3/2)}$	=	-0.31	+0.33	-0.30 + 0.12i	$-0.28^{+0.52}_{-0.49} + 0.12i$	
$a_{K\Sigma}^{(1/2)}$	=	+0.47	+0.19	+0.20 + 0.01 <i>i</i>	$+0.87^{+0.55}_{-0.64} + 0.01i$	
$a_{\bar{k}\Sigma}^{(3/2)}$	=	-0.22	+0.24	-0.35 + 0.08i	$-0.33^{+0.44}_{-0.47} + 0.08i$	
$a_{\bar{k}\bar{\lambda}}^{(1/2)}$	=	+0.34	+0.38	+0.27 + 0.01 <i>i</i>	$+0.98^{+0.59}_{-0.59} + 0.01i$	
$a_{K\Xi}^{(1)}$	=	+0.15	+0.34	-0.02 + 0.17i	$+0.48^{+0.43}_{-0.43} + 0.17i$	
$a_{K\Xi}^{(0)}$	=	+0.66	+0.98	-0.62 + 0.14i	$+1.02^{+0.51}_{-0.68} + 0.14i$	
$a_{\bar{k}=}^{(1)}$	=	-0.50	+0.66	-0.42	$-0.26^{+0.34}_{-0.34}$	
$a_{\bar{k}=}^{(0)}$	=	-0.15	+0.02	+0.13	$+0.00^{+0.78}_{-0.68}$	
$a_{K\Lambda}^{(T/2)}$	=	-0.04	+0.50	-0.27 + 0.14i	$+0.19^{+0.55}_{-0.56} + 0.14i$	
$a_{\bar{k}\Lambda}^{(1/2)}$	=	-0.05	+0.50	-0.40 + 0.18i	$+0.04^{+0.55}_{-0.56} + 0.18i$	
$a_{nN}^{(1/2)}$	=	-0.01	+0.26	-0.13 + 0.19 <i>i</i>	$+0.13^{+0.60}_{-0.65}$ + 0.19 <i>i</i>	+0.62 + 0.30i
$a_{n\Xi}^{(1/2)}$	=	-0.09	+0.84	-0.49 + 0.17i	$+0.25^{+0.74}_{-0.73} + 0.17i$	
$a_{n\Sigma}^{(1)}$	=	-0.04	+0.22	-0.15 + 0.13i	$+0.03^{+0.24}_{-0.24} + 0.13i$	
$a_{\eta\Lambda}^{(0)}$	=	-0.04	+0.70	-0.51 + 0.38i	$+0.15^{+0.51}_{-0.55} + 0.38i$	+0.64 + 0.80i

Recall: $\mathcal{L}^{(3)}_{\scriptscriptstyle \phi B}$ contact terms are neglected

Low energy constants (LECs)

• integrating out strange quark $SU(3) \longrightarrow SU(2)$

• double scale expansion: $m_0 \gg M_K \gg M_\pi$

- 1. IR-regularized loop integrals in three-flavor formulation
- 2. expand in $\{(t 2M_{\pi}^2), M_{\pi}^2, (s m_0)^2\}$
- 3. expand in $\{M_K\}$ to first order

Low energy constants (LECs)

$$\begin{split} c_{1} &= b_{0} + \frac{b_{D}}{2} + \frac{b_{F}}{2} + \frac{M_{K}}{256\pi F_{\pi}^{2}} \left[5D^{2} - 6DF + 9F^{2} + \frac{2}{3\sqrt{3}}(D - 3F)^{2} \right] + \mathcal{O}(M_{K}^{2}), \\ c_{2} &= b_{8} + b_{9} + b_{10} + 2b_{11} - \frac{M_{K}}{128\pi F_{\pi}^{2}} \left[6 + \frac{19}{3}D^{4} + 4D^{3}F + \frac{58}{3}D^{2}F^{2} - 12DF^{3} \right] \\ &+ 25F^{4} - \frac{8(D - 3F)^{2}(D + F)^{2}}{3\sqrt{3}} \right] + \mathcal{O}(M_{K}^{2}), \end{split}$$

 $c_3 = ..., c_4 = ...$

shifts:

 $\begin{array}{l} \Delta c_1 = +0.2 \, {\rm GeV}^{-1}, \ \Delta c_2 = -2.1 \, {\rm GeV}^{-1} \\ \Delta c_3 = +1.6 \, {\rm GeV}^{-1}, \ \Delta c_4 = +2.0 \, {\rm GeV}^{-1} \end{array} \\ \begin{array}{l} \Delta (c_2 + c_3 - 2c_1) = -0.1 \, {\rm GeV}^{-1} \end{array}$

• the same is performed for the $\pi \Xi$, $\pi \Sigma$ and $\pi \Lambda$ sector

Low energy theorems (LETs)

 πB LETs are useful for chiral extrapolations of LQCD results:

$$T_{\pi N}^{+} = \frac{M_{\pi}^{2}}{F_{\pi}^{2}} \left\{ -\frac{g^{2}}{4m_{N}} + 2(c_{2} + c_{3} - 2c_{1}) + \frac{3g^{2}M_{\pi}}{64\pi F_{\pi}^{2}} + \mathcal{O}(M_{\pi}^{2}) \right\}$$
$$T_{\pi N}^{-} = \frac{M_{\pi}}{2F_{\pi}^{2}} \left\{ 1 + \frac{g^{2}M_{\pi}^{2}}{4m_{N}^{2}} + \frac{M_{\pi}^{2}}{8\pi^{2}F_{\pi}^{2}} \left(1 - 2\log\frac{M_{\pi}}{\mu} \right) + M_{\pi}^{2}d_{\pi N}^{t}(\mu) + \mathcal{O}(M_{\pi}^{4}) \right\}$$

 πN isovector combination is stable with respect to the kaon mass effects (known)

Bernard et al. 1995

• also can be done for the $\pi \Xi$, $\pi \Sigma$ and $\pi \Lambda$ sector

$$\bar{T}_{\pi\Sigma}^{-} = \frac{2M_{\pi}}{F_{\pi}^{2}} \left\{ 1 + \frac{g_{\Sigma}^{2}M_{\pi}^{2}}{16m_{\Sigma}^{2}} + \frac{g_{\Sigma\Lambda}^{2}M_{\pi}^{2}}{4(m_{\Lambda} + m_{\Sigma})^{2}} + M_{\pi}^{2}d_{\pi\Sigma}^{\prime}(\mu) + \frac{M_{\pi}^{2}}{8\pi^{2}F_{\pi}^{2}} \left(1 - 2\log\frac{M_{\pi}}{\mu}\right) + \mathcal{O}(M_{\pi}^{3}) \right\}$$
(new)

Low energy theorems (LETs)

 $a_{\pi^+\Sigma^+} = -0.197 \pm 0.011$ fm $a_{\pi^+\Xi^0} = -0.098 \pm 0.017$ fm

Torok et al. 2009

Summary

- ► scattering lengths calculated to one loop in SU(3) - \chi PT: very slow convergence of the chiral series.(without third order contact terms)
- within the $\pi N, \pi \Xi, \pi \Sigma$ and $\pi \Lambda$ sector constraints on the LECs to NLO are calculated.
- novel low-energy theorems in the pion-hyperon sector are derived.